Monitoring and Managing California Endemic Large Branchiopods

By
Brent Helm, Ph.D.
Tansley Team, Inc.
(dba Helm Biological Consulting)
(530) 633-0220
bhelm69485@aol.com
Who are the Endemics?

- Vernal pool fairy shrimp (VPFS, *Branchinecta lynchi*)
- Conservancy fairy shrimp (COFS, *B. conservatio*)
- Longhorn fairy shrimp (LFS, *B. longiantenna*)
- Midvalley fairy shrimp (MFS, *B. mesovallensis*)
- California fairy shrimp (CFS, *Linderiella occidentalis*)
- Mono Lake brine shrimp (*Artemia monica*)
- San Francisco brine shrimp (*A. franciscana*)
- San Diego fairy shrimp (SDFS, *B. sandiegonensis*)
- San Rosa Plateau fairy shrimp (SRPFS, *L. santarosae*)
- Riverside fairy shrimp (RFS, *Streptocephalus woottoni*)
- California clam shrimp (CCS, *Cyzicus californicus*)
- Vernal pool tadpole shrimp (VPFS, *Lepidurus packardi*)
Goals and Objectives

- What is the goal?
 - To maintain or increase endemic large branchiopod occurrences and abundances?

- How do we reach the goal?
 - Objectives
 - The “who, what, when, where, and how” of reaching the goals
Objectives

- First
 - Monitor vernal pools large branchiopods
- Second
 - The results of the monitoring will dictate what maintenance and management activities are needed. Right?
- Wait!
 - Need to know the life histories of targeted species
 - The parameters that influencing their occurrences and abundances
Life History

<table>
<thead>
<tr>
<th>Large Branchiopod Species</th>
<th>Depth (in inches)</th>
<th>Duration (in days)</th>
<th>Area (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Diego Fairy Shrimp</td>
<td>X X X X X X X X</td>
<td>X X X</td>
<td>X X X</td>
</tr>
<tr>
<td>Midvalley Fairy Shrimp</td>
<td>X X X X</td>
<td>X X X</td>
<td>X X X</td>
</tr>
<tr>
<td>Vernal Pool Fairy Shrimp</td>
<td>X X X X X X X X</td>
<td>X X X</td>
<td>X X X</td>
</tr>
<tr>
<td>Longhorn Fairy Shrimp</td>
<td>X X X X</td>
<td>X X X</td>
<td>X X X</td>
</tr>
<tr>
<td>California Fairy Shrimp</td>
<td>X X X X X</td>
<td>X X X</td>
<td>X X X</td>
</tr>
<tr>
<td>Santa Rosa Plateau Fairy Shrimp</td>
<td>X X X X</td>
<td>X X X</td>
<td>X X X</td>
</tr>
<tr>
<td>Vernal Pool Tadpole Shrimp</td>
<td>X X X X X X X X</td>
<td>X X X</td>
<td>X X X</td>
</tr>
<tr>
<td>California Clam Shrimp</td>
<td>X X X X</td>
<td>X X X</td>
<td>X X X</td>
</tr>
<tr>
<td>Conservancy Fairy Shrimp</td>
<td>X X X X</td>
<td>X X X</td>
<td>X X X</td>
</tr>
<tr>
<td>Riverside Fairy Shrimp</td>
<td>X X X X X X X X</td>
<td>X X X</td>
<td>X X X</td>
</tr>
</tbody>
</table>
Life History

- San Diego fairy shrimp (SDFS)
 - Very fast life cycle
 - Can mature in 7 days
 - Max longevity = 45 days
 - Inhabits very flashy pools and deep turbid road ruts (Trump Pools)
- Co-occurs and hybridizes with the versatile fairy shrimp (B. lindahli)
Midvalley fairy shrimp (MFS)

- **Fast maturing**
 - Can mature in 16 days
 - Max longevity = 143 days

- Inhabits flashy grassy pools (dominated by facultative grasses)

- Often overlooked or assumed to be VPFS
Life History

- Vernal pool fairy shrimp (VPFS)
 - Fast maturing
 - Can mature in 14 days
 - Max longevity = 139 days
 - Susceptible to low DO and warm waters
 - Highest densities occur in clear water pools with low growing vegetation with highly fluctuating hydroperiods with no other LB
 - Found in the most diverse habitats
Life History

- Longhorn fairy shrimp (LFS)
 - Moderate maturing time
 - Can mature in 23 days
 - Max longevity = 147 days
 - Occupies tiny rock out crop pools and moderate to large alkaline playa pools
 - Highest densities are in rock out crop vernal pools with no other LB
 - Densities are low in turbid playa pools
 - Generally disappear long before habitat dries
Life History

- **California fairy shrimp (CFS)**
 - Moderate maturing time
 - Can mature in 21 days
 - Max longevity = 168 days
 - Can tolerate
 - high water temperatures
 - low DO (for a fairy shrimp)
 - thatch
 - Densities are significantly decreased in ungrazed pools
 - Strict mid-water column filter feeders and tend to “hover” in non vegetated areas
 - Will seek lower water temperatures in the bottom cattle hoof prints
 - Mating instinct in males is strong and they remain “clasped” to females for extended periods even when removed from water
Life History

- Vernal pool tadpole shrimp (VPTS)
 - Slow maturing
 - Can mature in 35 days
 - Max longevity = 168 days
 - Can tolerate
 - High levels of poaching
 - = livestock trampling creating punch and pot-marks
 - Low DO
 - Warm water
- Greatest densities are in turbid pools
- Can create turbidity by bioturbation activities that uproot young plants
- Adults can move into swales and drainages (ephemeral and intermittent drainages) but young are poor swimmers and are swept downstream
Life History

- California calm shrimp (CCS)
 - Can tolerate
 - High levels of poaching
 - The lowest DO
 - High water temperatures
 - Greatest densities are in turbid pools
 - Can tolerate ungrazed pools since they can swim up and down in the water column
 - Occur in ponds and other deep semi-permanent habitats
Life History

- Conservancy fairy shrimp (COFS)
 - Moderate maturation time
 - Can mature in 19 days
 - Max longevity = 154 days
 - Always found in turbid waters
 - Prefers playa pools
 - Moderately tolerant to DO and warm water
 - Very fragile (soft) until after maturity
 - Generally disappears long before habitat dries
 - Generally co-occurs with VPTS
Life History

- Riverside Fairy Shrimp (RFS)
 - Very slow maturing
 - It takes 45 days to mature
 - Max longevity = 120 days
 - Needs
 - Warm water to hatch
 - Deep pools
 - Size is not as important as depth so long as ponding duration is adequate
 - Fastest swimmer of the endemic LB
 - Perhaps the most tolerant high water temperatures and low DO of the endemic fairy shrimp
 - Often coming to surface for oxygen
What is the most important factor influencing vernal pools?
Parameters Influencing LB Occurrences

- Δ in hydroperiod (inundation duration) - the most important factor influencing vernal pools
 - Δ in depth
- Δ in water quality
 - Pollutants
 - \downarrow in dissolved oxygen (DO)
 - \downarrow in pH
 - Δ in turbidity
Parameters Influencing LB Occurrences (cont.)

- ↑ predators and competitors
- Δ in food availability
- Δ in stimuli that break cyst dormancy
 - DO, pH, water temperature, cold “snap”, pre-saturation, barometric pressure
Parameters Influencing LB Occurrences (cont.)

- Dr. Jamie Kneitel et al (2017) study of four CA endemic LB responses to hydroperiod, plant thatch, and nutrients in mesocosms

 - Four Species
 - Vernal pool fairy shrimp (VPFS)
 - Vernal pool tadpole shrimp (VPTS)
 - California clam shrimp (CCS)
 - California fairy shrimp (CFS)
Parameters Influencing LB Occurrences (cont.)

- **Kneitel et al. (2017) (cont.)**
 - **Hydroperiod Results**
 - CFS densities were not affected by hydroperiod
 - VPFS density \uparrow when hydroperiod stability \downarrow
 - CCS & VPTS densities \downarrow when hydroperiod stability \downarrow
 - Why? These species hatch later and have longer maturation rates
 - Unstable hydroperiod \uparrow DO and turbidity
Parameters Influencing LB Occurrences (cont.)

Kneitel et al (2017) (cont.)

- Thatch Results
 - ↑ thatch (native or non native) ↓ VPFS, CFS and VPTS densities
 - CCS no response to thatch

- Water Quality Results
 - DO positively correlated with VPFS but negatively with VPTS and CCS
 - Conductivity negatively correlated with VPFS and CFS
 - Turbidity positively correlated with VPTS and CCS
 - Chlorophyll-a positively correlated with all LB’s
Monitoring

- Design
- Techniques
- Timing
Monitoring

- **Design**
 - **How many pools?**
 - More is better
 - **Which pools?**
 - Stratify by:
 - Soil types
 - Pastures (paddocks)
 - Pool sizes/depths
 - **How often - frequency?**
 - **Same pools each time?**
Monitoring

- Techniques
 - Two Methods (not including eDNA)

Wet-season sampling

Dry-season sampling
Monitoring

- **Techniques**

- **Limitations**
 - **Dry**
 - Only cysts presence. Not if they are hatching, maturating and reproducing
 - What if inoculum was used?
 - May not be able to tell different species of *Branchinecta*

 - **Wet**
 - Presence is determined by seasonal environmental conditions
 - Rainfall
 - Cues to break cyst dormancy
Monitoring

- Techniques
 - Wet
 - Qualitative – Present or absent
 - Semi-quantitative
 - Densities (number of individuals per volume)
 - Volume = Net aperture x distance
 - Quantitative
 - Tube sampler
 - Water column
 - Soil – disruptive to pool bottom
Monitoring

- **Techniques**
 - **Dry**
 - **Qualitative** – Present or absent
 - Consolidate sub-samples
 - **Semi-quantitative**
 - Measure volume of consolidated sample
 - **Quantitative**
 - Soil Core
Monitoring

- **Techniques**

- **Other Wet-season Monitoring Parameters**

 - **Biological Parameters**
 - **Wildlife**
 - Other macroscopic aquatic invertebrates
 - Mosquito and midge fly larvae
 - Amphibians
 - Waterfowl/shorebirds/wading birds
 - **Vegetation**
 - Vascular plants
 - Invasive weeds
 - Non-vascular plants
 - filamentous algae
Monitoring

- Techniques (cont.)
 - Other Wet-season Monitoring Parameters (cont.)
 - Chemical Parameters
 - Water quality (pH, DO, etc.)
 - Standardize timing
 - Physical Parameters
 - Inundation (Ponding)
 - Depths
 - Average
 - Maximum
 - Area
 - Duration
 - Amount of poaching or other disturbances
Monitoring

- **Timing**
 - **Dependent on:**
 - Method(s) used
 - Targeted species
 - Local weather
 - Rainfall patterns
 - Ambient temperatures between storm events
 - Air / Water
 - Winds
Monitoring

- **Timing (cont.)**
 - **Dependent on:**
 - **Habitat Types**
 - **Hydrology Inputs**
 - Direct inception
 - Surface flow
 - Subsurface flow
 - Depth of soil over impervious layer
 - Rock outcrop pool vs Northern hardpan vernal pool
 - **Bottom Line** – You can’t set a date in advance
Management

How to maintain hydroperiods?

Livestock Grazing

- Liacos (1962) Heavy grazed site (> 35 years)
 - \(\uparrow \) soil density and shallow soil \(\uparrow \) water yield

- Blackburn (1975)
 - \(\uparrow \) vegetation \(\downarrow \) runoff

- Barry (1975)
 - \(\uparrow \) thatch \(\downarrow \) net moisture
 - From evaporation and soaking into dry plant matter
Management

- Maintaining hydroperiods (cont.)
 - Livestock Grazing
 - Gifford and Hawkins (1978)
 - ↑ grazing ↓ soil infiltration
 - Marty (2015)
 - Ungrazed pools ↓ hydroperiod (50-80%)
 - Slower to fill and faster to dry down
 - Bottom line - grazing increases hydroperiods by removing phytomass and increasing soil “Cowpaction”
Management

- **Livestock Grazing**

 - Different types of livestock
 - Sheep
 - Goats
 - Horses
 - Cattle

 - Picking the correct livestock starts with knowing your goals
 - What do you expect your grazers to do?
 - Different types of livestock graze differently and therefore will impact each site differently
Management

- Alien Invasion
 - Predators
 - Bullfrogs
 - Fish
 - Weeds
 - Always Mediterranean barely (*Hordeum marinum subsp. gussoneanum*) and Italian ryegrass (*Festuca perennis* aka *Lolium*)
 - Waxy manna grass (*Glyceria declinata*)
 - Invades pools with moderate depths but minimum surface areas that are not directly exposed to winds
 - Long floating leaves reduces amount surface water
 - Increases thatch contributing to **BOD**
 - Which can attract mosquitoes
Waxy manna grass (*Glyceria declinata*)
Management

- When the Natives take over
 - Common spikerush (*Eleocharis macrostachya*)
 - Minimizes movement of LB
 - Serves as attachment locations for filamentous algae
 - Quite palatable to livestock and water fowl
Conclusion

- There is no one recipe for monitoring or managing LB
 - Every site is unique
- The land manager has to really understand the site’s ecology and the life histories of the targeted species
Discussion

Current Threats

- Besides residential, commercial, and agricultural development?

1. Climate change
 - Drought
 - Bimodal rainy season?
Discussion

- **Bimodal Seasonal Rain**
 - Early and late rains with none to little in the middle
 - Early rains
 - False starts - LB hatch but can’t complete their life cycle
 - If occurs frequently can extirpate species due to cyst bank depletion
 - Late rains
 - Warm temperatures
 - Low DO
 - False starts
 - More grasses = greater phytomass (BOD)
 - Possibly C₄ metabolism plant invaders
Discussion

- **Bimodal Seasonal Rain (cont.)**
 - Which LB species are going to be impacted the greatest by Global Warming?
 - Southern California populations, especially those with long maturation periods
 - Riverside fairy shrimp
 - Santa Rosa Plateau fairy shrimp
 - Longhorn fairy shrimp (Playa Pool)
 - Conservancy fairy Shrimp
El Fin
Citations and Suggested Reading

Holland and Jain (1984)

- ↑ frequency and abundance of upland ruderal species in VP margins during drought

C$_3$ vs C$_4$ photosynthetic pathways

- C$_3$ temperate climates with winter precipitation
- C$_4$ tropical environments with fall/summer precipitations

C4 weeds

- bermuda grass (*Cynodon dactylon*)
- barnyard grass (*Echinocloa* spp.)
- Johnson grass (*Sorghum halepense*)
- common purslane (*Portulaca oleracea*)
- crabgrass (*Digitaria sanguinalis*)
C4 Weeds (continued)

- Several species of pigweed (*Amaranthus* spp.),
- Russian thistle (*Salsola kali*)
- *Cyperus*
- *Euphorbia*
- *Hydrila*
- *Egeria*
- *Mollugo*
- *Portulaca*
- *Paspalum*
- *Echiniochloa*
- *Tribulus*